If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x+1=-3
We move all terms to the left:
x^2+20x+1-(-3)=0
We add all the numbers together, and all the variables
x^2+20x+4=0
a = 1; b = 20; c = +4;
Δ = b2-4ac
Δ = 202-4·1·4
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8\sqrt{6}}{2*1}=\frac{-20-8\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8\sqrt{6}}{2*1}=\frac{-20+8\sqrt{6}}{2} $
| (4x-10)+(5x+5)=360 | | k/29=19 | | 7x+13=3x-25 | | 2-1/5x=1 | | y2+4y+1=4y+5 | | Y=1.9x+155.3, | | (4x-10)+(5x+5)+x+(2x+5)+7x=360 | | (4x-10)+(5x+5)+x+(2x+5)=360 | | 4^2x-3=12 | | –9x–15=-2x–50 | | 4+3/5x=19 | | (4x-10)°+(5x+5)°+x°+(2x+5)°=360 | | 6i=9i-18 | | -11x+3x^2+4=0 | | 36=(2.5)(4)+1/2a(4)2 | | 3/4j=14 | | 36=(2.5)(4)+1/2a(4)^2 | | 3j4=14 | | 74=8a-2a | | 106=16x+26 | | -0,5x-8,5=x+2 | | 13=9x-7/5 | | 16–7(p+12)=–5 | | -1=4p+5-7p | | z-16=74 | | 12+2.7=x | | 3*(4x-2)+7x+8=4 | | (2x+36)+(4x+9)+(2x-25)=180 | | −5p=10 | | (10x+8)=(2x+56) | | 12=–10d–2d | | (x−4)/10=-3 |